MATERIALS AND TESTING
The Symposium started with a dedicated session to ETFE. R. Houtman presented the comprehensive “Design recommendations for ETFE foil structures” established by the TensiNet ETFE Working Group. It includes the description of the material itself and the design, calculation, manufacture, installation, maintenance, operation, examination, and testing. See also bookrevue page 16.

His colleague, F. Reitsma from IASO, discussed several cases highlighting the need for balancing architectural value and engineering restrictions that leads to changes from the initial design. An outstanding example is the new lobby of the Luxembourg Railway Station, where a single printed cable-reinforced layer of ETFE provides a respectful solution for the extension of an historical building (Fig. 1).

A. Escoffier showed the use of a flat single layer of ETFE for the stadium of Nice, subjected to experimental tests in order to be approved. The panels of ETFE were connected to 10mm diameter cables and pre-stressed to 0.6kN/m, that required a fixation detail for initial installation and re-stress (Fig. 2).

Instead of one single layer, cushions were adopted for the renovation of the Salzburg Central Station, as presented by K. Gipperich. The structural design was based on maximum stresses of 6.7N/mm² (for dead load + pressure), 12N/mm² (for snow) and 16.3N/mm² (for gusts of wind) in order to withstand the required 1,40kN/m² under peak snow load (Fig. 3).

Other materials considered were warp-knitted fabrics (T. Gereke), PTFE-coated fibreglass yarns (M. Dery) and waterborne fluoropolymer PVDF resins (K. Kech).

With regard to testing, A. Colman described a methodology that enables the application of a homogenous state of shear strain to architectural fabric specimens with a known state of biaxial stress, which allows a simple determination of the shear stress-strain relationship. P. Beccarelli reported on strain-controlled biaxial tests on cruciform specimens of coated fabrics, which are particularly meaningful for membrane installation processes and are complementary to stress-controlled experiments.

FORM AND DESIGN
Three presentations addressed explicitly the problem of form. N. Jakica focussed on the possibility of optimizing form by presenting the parametric design process of the Sport Stadium in Lamezia Terme (Fig. 4). He summarised the creation of the structural solution and building shape, as well as the paneling strategies for the ETFE cushions. He noted that, despite parametric modelling, a lot of manual work was required.

Conversely, S. Bhooshan presented an intuitive, collaborative, physically-based form finding procedure to explore formal expressions for architectural modelling (Fig. 5).

An outstanding contribution of the symposium...
was the creative sculpture “cut.enoid.tower,”
made by G. Fitz of the KoGe Institute of
Structure and Design, Innsbruck. The
experimental “cut.enoid.tower” was erected
making into consideration architectural,
structural and functional issues. It is an active
bending system, made of irregularly-arranged,
hinged columns and pre-stressed, tension-only,
minimal surface catenoids (Fig. 6).

Regarding design methods, P. Gosling
conducted round-robin exercises to quantify
the analysis of simple conic and hyper
membrane structures, and to provide a link
between material characterisation and
structural analysis. F. Dieringer discussed a
computational method for cutting pattern
generation. The process starts from three
dimensional coordinates and the final prestress
state, and determines a two-dimensional
surface, minimizing the difference between the
elastic stresses arising from the manufacturing
process and the final prestress. In this way, the
influence of the seam lines on the stress
distribution is investigated and the equal
length for adjacent patterns is controlled.

P. Teuffel defined the “generative modelling” of
membrane structures, consisting of parameters
and algorithms that convert the manual design
into a more efficient automated process. A four
point hyper shell submitted to this “generative
modelling” revealed an improvement in the
time duration of the design process and
achieved much more controllable precision.
The geometry was found much faster and
standard details were parameterized (Fig. 7).

R. Wehdon went into cost control, analysing a
donate-point 10x10m sail. He found that costs
increase when the curvature of the membrane
and the inclination of the guy cables are
decreased. Regarding the edge cables, total
costs also increase when their curvature
decreases but the unit cost results in a
U-shaped graph (Fig. 8). When curvatures
range from 3% to 12%, the unit cost follows
the total cost, but when it exceeds 12%,
the unit cost increases further because the surface
of the membrane decreases. These conclusions
are limited in scope, but are indicative of the
interest of investigating the influence of the
design parameters on costs, and implementing
them in software tools such as “Formfinder”.
Other presentations related to design methods
addressed the Poisson’s ratio (J. Uhlemann),
neural networks to capture the relationship
between experimental input and output data
(N. Bartle), the force density method (F.
Dansk) and the application of three dimension,
minimal path computations to space frames
(M. Fleischmann).

PROJECTS AND REALIZATIONS

Most of the Symposium was devoted to
projects and realizations. Noteworthy
examples were the Marseille and Nice Stadia
(A. Escoffier), the Titan Plaza Shopping Centre
in Bogotá (B. Stimpfle), the Camper Pavilion
for the Volvo Ocean Race (R. Houtman), the
Facade of the Ministry of Justice in Georgia
(M.Yilmaz) and the London 2012 Olympic
Stadium Wrap (P. Romain).

Pneumatic structures

M. Birchall chaired the special session
dedicated to pneumatic structures. He
emphasized their great potential to fulfil the
needs of the constructed environment, and
provided recommendations and potential
opportunities to designers and contractors.
Additionally, he gave an overview of the main
issues and recent developments such as control
systems and insulation capabilities (Fig. 9). He
reminded the audience of the TensiNet
Working Group on Pneumatic Structures.

P. Romain discussed the evolution of a tennis
dome product called “Airplay” starting with the
improvement and replacement of three
existing air halls. He identified the key
components of foundations, envelope, inflation
control and access. He finally stated that in
spite of the success of these developments,
attests to market them as a product are
dependent on other factors beyond
functionality and design.

R. Luchsinger defended the Tensairity concept,
and presented a high-performance wing
dedicated to harvest wind energy at high
altitudes, which saves the requirements for
land, towers and foundations. A live load to
dead load ratio of more than 270 was predicted
using standard kite materials (Fig. 10).

The Tensairity concept was also applied to
arches by J. Roekens and to inflatable beams as
considered by J. C. Thomas and Q. T. Nguyen.

D. Strobel dealt with multi-chambered ETFE
cushions. He included form finding, static
analysis and cutting pattern generation into a
holistic calculation. A completed model was
analysed under external loadings by taking into
consideration the gas laws for multiple
chambers and any boundary conditions.
Noticeable pneumatic structures shown during
the dedicated session were balloons for
scientific applications (A. Bown, Fig. 11), the
London 2012 Water Polo Venue (M. Birchall),
the Perpignan Clara Commercial Centre, the
Splash & SPA in Rivera Monteceneri (S.
Lombardi, Fig. 12) and the temporary textile
pavilion at Politecnico di Milano (A. Zanelli).

Adaptable, transformable, deployable
Movement was also discussed in the
Symposium. V. Beatini proposed a flexible, self-
supporting structural system, based on a series

Figure 6. “cut.enoid.tower”, KoGe Institute
Figure 7. Parameterized details of column connections
Figure 8. Unit and total cost related to edge cable curvature
Figure 9. Modern Tea House, Frankfurt 2007
Figure 10. Inflatable wing section with two Tensairity elements
of rigid voussoirs, connected by a cable passing through them, which forms the skeleton of whatever profile. She also presented a frame as a mechanism, foldable from a planar configuration to multiple and varied hypar shapes, alternating high and low points.

K. Roovers was concerned with deployable scissor structures, based on the angulated scissor component, and developed a geometric design method, based on mathematics, to convert continuous surfaces into scissor grids with angulated components. The attachment of membranes to these structures is a complex matter that requires further research.

C. Paech showed two of the largest retractable membrane roofs recently completed: the National Stadium in Warsaw (Fig. 13), and the BC Place Stadium in Vancouver (Fig. 14).

In a special session dedicated to eye-catching projects, J. Bradatsch from SL-Rasch showed the foldable umbrellas of the external courts of the Medina Haram Piazza, where 250 26x26m shading umbrellas had been installed to shelter more than 100,000 m². Previous experiences were improved through numerical simulations, wind tunnel tests and physical modelling that result in close agreement. An interesting special feature was the minimization of energy by keeping the stability of the centre of gravity during the folding and unfolding processes. The general views of the ensemble (Fig. 15) were indeed really impressive and emphasized by J. Bradatsch citation of Augustinus: “Beauty is the brilliance of truth”.

New concepts and non conventional structures

“Re-thinking” projects and ideas focused on active bending elements and hybrid structures.

L. de Laet opened the topic with elastically-bent linear elements integrated with supporting systems for membrane structures to provide more freedom in design and to reduce the required quantity of external supports (Fig. 16).

J. Lienhard, defending the integration of elastically-bent beam elements, offered a great potential for new shapes and highly-efficient structural systems, while B. Philipp emphasized the necessity of assuming elastic members from the beginning in the design process, and showed equations needed to simulate these hybrid structures.

A different approach was presented by P. D’Acutuo. A full-scale temporary lightweight pavilion for the grand staircase of the ETH Science City Campus has been designed with individually-bent panels of plywood, adjusting the bending behaviour to achieve the required curvature. The system was stabilized with a sequence of cables (Fig. 17). A non-linear static parametric digital model, based on the bending energy of the panels, has been calibrated with physical tests and employed to explore various design solutions.

The “membrane restrained girder,” a three-chord truss with flat membranes connecting the chords, was introduced by H. Alpermann. The membrane between the upper chords raises the buckling load and the membranes on the sides act as diagonals bracing the spreaders. It was found that the connection of the membrane and the chords has a large influence on the load-bearing capacity.

K. Kawaguchi focussed attention on the application of membranes as safer ceiling systems for large rooms than of gypsum boards or metal louvers due to the damages caused by earthquakes.

ENVIRONMENTAL ISSUES AND LIFE CYCLE ASSESSMENT

J. Cremers chaired a special session dedicated to the environmental impact of membrane materials and structures. He reviewed the main concepts of LCA (Life Cycle Assessment), EPD (Environmental Product Declarations), Building Assessment Systems, CPR (Construction Products Regulation) and the TensiNet LCA Working Group, presented in TensiNews nº 23.
The audience celebrated the findings of W. Sobek of environmental concerns of the building industry. Consumption of resources, wastes, energy, emissions, pollution, toxicity and global warming cause us to change the question from “which is more lightweight?” to “which has less embodied energy?” During a transitional period, there has been a reduction in the consumption of materials, energy, waste and emissions. His trend was illustrated by the performance of the three-layered roof of the Suvarnabhumi International Airport in Bangkok, the cantilevered altar for the Pope in Freiberg, which was made of anything borrowed or recycled, and the most modest building with no apparent structure nor details of the Memorial in Sachsenhausen (Fig. 18).

Going into specific issues, P. Teuffel looked at the application of Aerogel in combination with membrane structures to evaluate the potentials for natural day lighting, and J. Llorens furnished acoustic in situ measurements of textile roofs to formulate design and conditioning recommendations for textile enclosures.

H. Suo assessed the winter energy performance and actual energy saving of a pneumatic sport hall in Italy, using the dynamic energy simulation software ESP-r. The results show the dynamic behaviour of membranes, focusing on the low thermal inertia, the role of solar gains, infiltration losses and long wave radiation of the sky. The energy demand reduction achieved with double membranes with respect to single ones was quantified.

Recycling PVC-coated polyester membranes was exposed by F. Fournier. Its benefits were quantified and proven in order to convince the different actors of the industrial chain to allocate time, energy and financial resources to implement this action. Several cases were mentioned, highlighting, among others, the Lord’s Cricket Ground in London, the German Pavilion in Shanghai 2012, the Kuala Lumpur Stadium and the Tennis Hall in La Grande Motte. She also mentioned “Texytool,” a dedicated software for measuring the reduction of impacts, including the fabrication of custom-made panels, accessories, packaging and transport.

J. Chilton presented the results of a preliminary study that aimed to quantify the embodied energy consumed in the construction of three recently built examples of ETFE foil-covered roofs of different configurations. They demonstrated the efficiency of this construction system when compared to glazed roofing. He also noted that the strict application of values per m² stated by the EPD can be misleading, depending on the geometry and configuration.

C. Monticelli focused on five types of translucent cladding systems, analyzing the life cycle assessment of three lightweight textile façades and two translucent common systems currently available in the market (Fig. 19). Interesting conclusions arose, modifying existing common notions, and drawing attention to some aspects of design. On the one hand, it was revealed that there is no linearity between impact and weight. On the other hand, the impact of transportation costs resulted low compared to the manufacturing process.

Referring to design, the frame/surface ratio and the fixing system significantly affect the results. Maintenance was not considered and could be an area of improvement for future research.

In the final presentation, R. Wagner unveiled an energy-efficient textile building (Fig. 20). It is based on a translucent, multi-layered, double-curved, pre-tensioned membrane structure with high thermal isolation, that collects solar energy through heating air up to 140°C. The main challenges were collecting and storing solar gains, protecting from losses while avoiding the heating of the interior space. She invited the audience to learn more about the demonstration building by attending Techtextil in Frankfurt.

CLOSING SESSION

in honour of Prof. Dr. M. Ihsan MUNGAN

F. Dansik, of the Organizing Committee, closed the Symposium honouring Ishan Mungan, a tireless figure, teacher and researcher in the field of shell and spatial structures. He was involved for nearly 40 years with the International Association for Shell and Spatial Structures and was awarded an Eduardo Torroja medal in 2009. The legacy that he lovingly, intelligently and generously built during his entire life will always be remembered by those whom he touched, especially the younger generation, whom he mentored and carefully ushered in to the field of architectural structures. They will benefit from his influence far into the future.

OTHER ACTIVITIES

Apart from the presentations, other activities offered during the Symposium included a classical Turkish musical performance, an opening cocktail (including raki) served on the seashore, the regular TensiNet Annual General Meeting, the seemingly endless Bosphorus cruise with dinner and dancing, and finally, the technical (Fig. 21) and historical tours. The proceedings of the symposium are available. See also bookreview page 16.

Josep I. de Llorens
ignasi.llorens@upc.edu