Case study
'TENSILE SURFACES STRUCTURES' DESIGN PROCESS

RESEARCH

A SIMPLE NON-LINEAR MATERIAL MODEL FOR PVC-COATED POLYESTER FABRICS

“Batsail”
IMS RESEARCH PROJECT

PROJECT

STADIA
South Africa
contents

PROJECTS PAGE 4 & 5
Pakistan TOLL PLAZA CANOPIES
Spain LA FACTORIA Sun shading of the streets of the shopping mall
Turkey WEDDING HOUSE CANOPY A New Interpretation for the Wedding Gown
Turkey SPORT FACILITIES

8 > 13 South Africa 4 STADIUM PROJECTS
Johannesburg Soccer City Stadium
Durban Moses Mabhida Stadium
Port Elizabeth Stadium of the “windy city”
Cape Town The new Cape Town Stadium

16 & 17 USA LONE BUTTE CASINO Lights Up the Desert Sky
Spain ETFE SINGLE SKIN Aranda de Duero ROOF

22 The Netherlands
JINSO PAVILION Extension to a catering pavilion

RESEARCH PAGE 6 & 7
A SIMPLE NON-LINEAR MATERIAL MODEL for PVC-coated polyester fabrics

14 & 15 “BATSAI” IMS Research Project

ARTICLE 15
FORMFINDER SOFTWARE
“One Click” Cost Estimation for the architectural design of membrane structures

18 CASE STUDY ‘Tensile surfaces structures’ design process

MISC PAGE 23
VIENNA UNIVERSITY OF TECHNOLOGY MASTER PROGRAM
MEMBRANE LIGHTWEIGHT STRUCTURES

ANHALT UNIVERSITY OF APPLIED SCIENCES
MASTER COURSE MEMBRANE STRUCTURES

LITERATURE SPANISH EDITION
European Design Guide for Tensile Surface Structures

THE TS ARCHI PROFILE PROFIL TENSION SYSTEM INNOVATION

24 SYMPOSIUM TENSILE ARCHITECTURE: Connecting Past & Future

Editorial Board
John Chilton, Evi Corne, Peter Gosling, Marijke Mollaert, Javier Tejera

Coordination
Marijke Mollaert, phone: +32 2 629 28 45, marijke.mollaert@vub.ac.be

Address
Vrije Universiteit Brussel (VUB), Dept. of Architectural Engineering, Pleinlaan 2, 1050 Brussels, Belgium fax: +32 2 629 28 41

ISSN
1784-5688

All copyrights remain by each author
Price 15€ postage & packing included
Every third year Tensinet organizes a Symposium. The field of Tensile Surface Structures is evolving: new materials and new realizations prove that the field of applications is steadily growing. The last two Symposia took place in Brussels (VUB) and in Milan (Politecnico di Milano) with increasing numbers of participants and speakers. These Symposia provide an opportunity for information transfer on the state of the art and new technologies, enabling delegates to share knowledge with a wider audience. On the other hand they advertise tensile surface structures and make them better known to potential clients as well as other professionals in the building industry.

As members of the Scientific Committee, Marijke Mollaert and myself, together with Evi Corne, have visited the UACG in Sofia. We had a warm welcome from the Principal and the Faculty who had given us the opportunity to visit the university facilities in preparation for the Symposium. The Organizing Committee in Bulgaria has already prepared the website for registration. You can access all necessary information about our Symposium on the 16th-18th September at http://tensinet2010.uacg.bg.

The theme of the symposium “Tensile Architecture: connecting past and future” is well suited for the market situation in Bulgaria, since several archaeological sites could benefit from translucent, lightweight temporary covers. The Symposium will feature a number of stimulating (keynote) lectures by prominent experts such as Martin Glass (gmp architecten, DE), Françoise Fournier (FERRARI SA, FR), Jan Laperre (Centexbel, BE), Peter Gosling (Newcastle University, UK), Bernd Stimpfle and Gerd Schmid (form TL, DE), Markus Balz (schlaich bergermann und partner, DE) and many others.

A number of TensiNet meetings will also take place during the Symposium. We invite you to attend our Symposium and ask you to inform colleagues about this event.

Currently TensiNet has more than 200 members from over 40 countries and 15 partners. We are happy to welcome a new partner within TensiNet: the German engineering and manufacturing company with a long history in the field of tensile fabric architecture: Hightex GmbH, Rimsting.

I hope you enjoy this current issue of TensiNews and I’m looking forward to seeing you in Sofia in September,
Toll Plaza Canopies at Rawat & I.J. Principal Road, Islamabad, Pakistan

Tollink Pakistan, a subsidiary of Tollink South Africa, needed BOT-Toll (Build, Operate and Transfer) collection facilities in Islamabad and chose for their project a canopy that stood out different in its form and architectural apparition. The preliminary design from Isbah Hassan & Associates was much appreciated. The structural engineering was done by Amjad Niazi Associates whereas the membrane engineering was done in China by Covertex. Mehatop FR 1000 was used as membrane: a PVC coated polyester fabric with a PVDF top coating on both sides. It has a weight of 1050g/m² and a tensile strength of 120KN/m – 110KN/m in warp and weft direction.

The most challenging part of the project was giving the required shape to the 200mm diameter pipe, with 6mm wall thickness. For this project a pipe bending machine and the allied heat process had to be made. Once the pipes were bent they were welded on the ground and the whole frame was lifted up to be placed on the vertical structural elements. The very first project of tensile fabric structure in Pakistan got instant attention of the architects and was much appreciated.

Kashif Ahmed, South Asia, Mehler Texnologies GmbH

Sun shading of the streets of the shopping mall

The first open-air commercial centre La Factoria is situated in the region of Huelva, Spain. During spring and summer temperatures exceed 40°C and solar radiation hits directly and very intensively. The demand was to find and realize a possibility of

Wedding House Canopy

The Municipality of Karşıyaka needed an extension for the main wedding house. The ARCH-ART team designed a conical roof with a hexagonal plan, supported by six arch structures which as a whole represent a wedding gown. The after wedding cocktail receptions and the Turkish traditional jewelry ceremonies take place at this extended area. The main function of the roof is to protect the guests from rain surprises but mostly from Izmir’s hot sun. Also, by creating an optical highlight that can be seen from a large distance, especially from the ferries that constantly carry passengers between the two main zones of the bay; the roof creates an attraction point, enhancing the wedding house. The roof stands like a white flower blooming, representing the purity of the
La Factoria
Huelva, Spain

Protecting the 8 streets of the commercial centre from the sun and give shadow to its visitors during their stay. On demand Carpatec designed, produced and installed a total of 64 hyperbolic paraboloids of 9.80m x 4.80m between the buildings of the centre and with a height of 9m, thus protecting the 8 streets and the façades of more than 200 shops. For the design the software programme Rhino Membrane was used, for the calculation of loads and form finding Forten 3000 was applied. Tensioning ropes and fittings are of stainless steel 316. The membrane is Mehler Valmex FR 700 MEHATOP F – Type I. The welding was made at high frequency. Production and installation were made within only 21 days from receipt of order, thus assuring that the project was ready on the inauguration day of the centre in summer 2009.

Dagmar Anne Genten
D.Genten@mehler-tecnologies.com
www.mehler-tecnologies.com

Ipek Yolu (Silk Road) Rally, with a total racetrack of 4.500km from Russia to Turkmenistan, is one of the FIA (International Automotive Federation) approved activities. The finish line to host the competitors been set in the territory of Turkmenistan. The Turkmenistan authorities and the contractor Polimeks Inc. specified a monumental welcoming structure to honour the competitors. Architect Tolga Cetin and his team designed a huge covering system of 1.875m² remarkable from long distances in the large steppes of the region. With 10 high points and monumental lines, the structure appeared as the symbol of this sport event. The designing, manufacturing and erection phases have been completed in a very short time of 15 days to reach the activity date. The structure itself was so impressive that after the completion of the rally, the authorities decided to move the artefact to different location for prestigious events. Structured with 10 poles to form conical shapes, the coverings highest point is 14m and span-width 27m. Due to the stretch forming of the corners by steel ropes, the total weight of steel has been extremely minimized.

Mehmet Yilmaz, Tensaform Membrane Structures Inc.
info@tensaform.com
www.tensaform.com

A New Interpretation for the Wedding Gown
Karşıyaka, Izmir, Turkey

The wedding gown, with the background of blue sea, creates beautiful scenes at any time of the day. The main target of the design is to highlight the membrane with a simple construction. A frame structure was chosen as construction system to avoid using cables that may limit the area usage.

Ozgur Demirbas
info@arch-art.com.tr
www.arch-art.com.tr

TENSINEWS NR. 18 – APRIL 2010

A simple non-linear material model for PVC-coated polyester fabrics

Introduction

The design and analysis of tensioned and inflatable structures made of coated-fabrics rely on numerical calculations whose accuracy strongly depends on the accuracy of the material models. Coated woven fabrics are non-isotropic materials and have a non-linear behaviour, mainly due to the strong interaction between the warp and the fill yarns. Whereas they consist of orthogonal fibres, their elastic properties do not comply with plane stress orthotropic theory, as it has been emphasized by Gosling.[1] In the last decade, complex models have been developed in order to take these effects into account. Among them are micro-mechanical models[2, 3], where the fabric behaviour is derived from a model of its microstructure. The other approach is to describe the fabric behaviour directly from experimentally determined stress-strain relationships[4, 5]. However, these approaches are to describe the fabric behaviour directly from experimentally determined stress-strain relationships[4, 5]. However, these elaborated models are less involved and too demanding regarding computation times to be used in engineering. We propose a new simple and computationally efficient non-linear material model based on an extensive experimental study of PVC-coated polyester fabric behaviour.

Experiments

Cruciform specimens were loaded on our biaxial test machine[6] (Fig. 1). The central square of the specimen was 500mm wide. In each cruciform arm four slits were made leading to five strips. Each strip was loaded independently by an electromechanical drive mounted on linear bearings allowing free movement of the drive transverse to the loading direction. Tests were load-controlled by the use of 10kN load cells fixed between every pair of drive and grip. Strains were measured by the use of two needle-extensometers placed in the warp and fill direction and bolted on the test specimen using small diameter screws. Specimens were first loaded at pre-stress and then from pre-stress up to maximum test stress using five different load ratios (5:1, 2:1, 1:1, 1:2 and 1:5). For every load ratio, the loading/unloading cycle was repeated five times in order to remove the residual strains. Only the last loading curve was used to determine the material properties.

An almost linear relationship was experimentally found between elastic moduli E_w and E_f (subscripts w and f represent the warp and fill directions) and load ratios in their normalized form γ_w and γ_f (Fig. 2), defined as:

$$\gamma_w = \frac{\sigma_w}{\sqrt{\frac{\sigma_w^2}{\gamma_w^2} + \frac{\sigma_f^2}{\gamma_f^2}}}$$

$$\gamma_f = \frac{\sigma_f}{\sqrt{\frac{\sigma_w^2}{\gamma_w^2} + \frac{\sigma_f^2}{\gamma_f^2}}}$$

The Poisson’s ratio ν_{wf} did not significantly vary as a function of γ_w and γ_f.

Proposed model

A simple material model is proposed based on the experimental results[7]. The material behaviour is assumed to be linear elastic, plane stress orthotropic for a given load ratio. In this case, the yarn-parallel mechanical behaviour is described by:

$$\begin{bmatrix}
E_w(\gamma_w) \\
E_f(\gamma_f)
\end{bmatrix} = \begin{bmatrix}
\frac{1}{E_w(\gamma_w)} & \frac{-\nu_{wf}}{E_w(\gamma_w)} \\
\frac{-\nu_{wf}}{E_f(\gamma_f)} & \frac{1}{E_f(\gamma_f)}
\end{bmatrix} \begin{bmatrix}
\sigma_w \\
\sigma_f
\end{bmatrix}$$

where the Young’s moduli can be formulated as linear functions of the normalized load ratios (Fig. 2):

$$E_w(\gamma_w) = \Delta E_w \left(\gamma_w - \frac{1}{\sqrt{2}} \right) + E_{1:1}^w$$

$$E_f(\gamma_f) = \Delta E_f \left(\gamma_f - \frac{1}{\sqrt{2}} \right) + E_{1:1}^f$$

The material model has five parameters: $E_{1:1}^w$, $E_{1:1}^f$, and ΔE_w, ΔE_f are the reference values of warp and fill Young’s moduli given for the 1:1 load ratio, ΔE_{wf} and ΔE_{wf} represent the variation of warp and fill Young’s moduli on the whole range of load ratios, and the Poisson’s ratio ν_{wf}.

All five parameters are estimated so that the difference between experimental and modelled data is minimized. The corresponding values are given in Table 1 for all tested materials.

The new model is represented by three dimensional stress-stress-strain surfaces in Figure 3, where it is superimposed with experimental data. The model non-linearity is here clearly visible: curved surfaces enable a better representation of the material behaviour.

Finite element analysis

The model is finally included in the commercial finite element software ANSYS with a USERMAT routine. Its predictions are compared to those of a standard plane stress orthotropic material and to biaxial test experimental results. The model accuracy was assessed by estimating the difference between measured and predicted strains for all data points. The results are presented in Figure 4 for all tested materials with the root mean square (RMS) of the strain difference and the maximum absolute strain difference. The difference between experiments and the proposed model was reduced by more than a factor 2 compared to the standard orthotropic material model for most fabrics. Only for the Ferrari membranes no significant improvement was observed. These materials have indeed a special manufacturing process where the fabric is pre-stressed during the coating. As a result the material is less

<table>
<thead>
<tr>
<th>MANUFACTURER & REFERENCE</th>
<th>$E_{1:1}^w$ (kN/m)</th>
<th>$E_{1:1}^f$ (kN/m)</th>
<th>ΔE_w (kN/m)</th>
<th>ΔE_f (kN/m)</th>
<th>ν_{wf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEHLER TECHNOLOGIES VALMEX FR700 (I)</td>
<td>653.2</td>
<td>444.5</td>
<td>521.2</td>
<td>403.7</td>
<td>0.327</td>
</tr>
<tr>
<td>MEHLER TECHNOLOGIES VALMEX FR900 (II)</td>
<td>882.0</td>
<td>679.6</td>
<td>803.8</td>
<td>437.6</td>
<td>0.263</td>
</tr>
<tr>
<td>MEHLER TECHNOLOGIES VALMEX FR1000 (III)</td>
<td>1200.0</td>
<td>881.7</td>
<td>941.2</td>
<td>782.5</td>
<td>0.318</td>
</tr>
<tr>
<td>MEHLER TECHNOLOGIES VALMEX FR1400 (IV)</td>
<td>1374.1</td>
<td>1003.4</td>
<td>1204.7</td>
<td>981.7</td>
<td>0.314</td>
</tr>
<tr>
<td>FERRARI PRÉCONTRAIN 702 (I)</td>
<td>635.3</td>
<td>444.5</td>
<td>521.2</td>
<td>403.7</td>
<td>0.327</td>
</tr>
<tr>
<td>FERRARI PRÉCONTRAIN 1002 (II)</td>
<td>830.2</td>
<td>976.0</td>
<td>766.7</td>
<td>123.9</td>
<td>0.213</td>
</tr>
<tr>
<td>VERSEDAU INDUTEX B1617 (I)</td>
<td>865.8</td>
<td>707.5</td>
<td>662.9</td>
<td>662.5</td>
<td>0.308</td>
</tr>
</tbody>
</table>

Table 1. Estimated parameters for the proposed non-linear material model.
sensitive to crimp interchange and its behaviour is similar to a standard linear orthotropic material. The second important result is that the computation time did not significantly increase. An average increase of less than 3% was observed during the analyses.

Conclusion

A simple non-linear material model to describe the yarn parallel behaviour of PVC-coated polyester fabrics under biaxial tension has been proposed. The model is based on a standard plane stress orthotropic material model with a constant Poisson’s ratio but with Young’s moduli that are linear functions of the normalized load ratios. The material response can be accurately described with five parameters, namely the warp and fill Young’s moduli for a 1:1 load ratio, the change in warp and fill Young’s moduli and the Poisson’s ratio. Only five different load ratios have to be measured in order to obtain reliable parameters. The new model has been included in ANSYS with a USERMAT routine. It has already successfully been applied for the finite element analysis of Tensairity® inflated structures developed in our centre[8].

The model is also suitable for the design of tensile fabric structures, where it could help improving the accuracy of numerical predictions.

Dr. Cédric Galliot
dr.rolf.luchsinger@empa.ch
www.empa.ch/css
(Center for Synergetic Structures)

Figure 1. Biaxial testing machine.

Figure 2. Linear relationship between Young’s moduli and normalized load ratios.

Figure 3. Stress-stress-strain representation of experimental data (red lines) and prediction of the proposed non-linear model (blue grid).

Figure 4. Comparison between the proposed non-linear model with a linear elastic orthotropic material model: difference between FEA predictions and experimental results.

REFERENCES
South Africa’s successful application for hosting the World Cup has resulted in the construction of several new stadia. The construction or modernization of these new arenas coincides with novel ideas for the design. In all cases the roofs play the major role when it comes to the question of unique design and easy recognition. The roof is the most important element to create the stadium look.

The stadium can accommodate 94,000 spectators. The three tier levels can be reached via curved inner and outer ramps. The Stadium is located in close neighbourhood to Soweto. Historical parts of the upper tier level of the old stadium (built in 1987), where Nelson Mandela was present during important events have been retained and conserved, whereas the whole rest of the stadium has been newly built.

Specially arranged coloured façade-panels with 6 colours and 3 textures on the surface changing from darker to lighter colours on the top as well as the light coloured upper membrane blend into the natural surroundings of the typical local ‘mine-dumps’. Starting from the architects images and ideas, schlaich bergermann und partner designed and developed the optimised structure for the huge roof and the façade structure in close corporation with the structural engineers of the concrete tiers structure, PDNA of Johannesburg. The overall shell geometry (roof and façade) derives from a torus with an outer diameter of 300m which was defined in section with varying radiuses (Fig. 2).

As the opening of the roof and the surrounding spatial ring truss (the most important structural element) follow the rectangular shape of the field and the arrangement of the tiers, both geometries combined create an impressing 3-dimensional curved structure.
Since the cable net structures for the Olympic Stadium roof in Munich, we use all our knowledge and creativity to make the roof of a stadium the star of the event. This can easily be observed in South Africa. The stadium roofs in Johannesburg (Soccer City), Durban, Port Elizabeth and Cape Town were designed by structural consulting engineers schlaich bergermann und partner under the lead of Knut Göppert, already widely known for their special designs.

Roof structures for enormous spans had to be developed, often with a depth of more than 50 m. Spatial load transfer structures are state of the art when it comes to efficient and sustainable engineering solutions. Fabrication and erection aspects influence the early design ideas and lead to unique installation processes. The authors present the four projects in detail and provide a view into the future of stadium roof design.

The 800m long spatial ring truss with its 3 chords (circular sections) is clad with polycarbonate panels. It is supported by 12 concrete shafts and 16 columns only. The roof cantilever truss (open sections) length over the tiers is 38m. The cantilevers are clad with arch supported PTFE membrane on the top side and an open mesh Glass/PTFE membrane on the bottom side. For the cladding of the inner edge of the roof also polycarbonate panels were used. Different from many arch supported membrane roofs for stadia, the soccer city stadium uses a radial arch arrangement. This considers the comparative small panel size as well as the architectural idea of the “finger formed clay pot” (Fig. 3 & 4).

The slim shell structure of the façade, designed as curved steel beam is supported on inclined concrete columns and fixed on the top to the spatial ring truss. The glass-fibre reinforced 13mm thick concrete façade panels 1,2m x 3,6m have been fabricated with natural colours and different textures and arranged exactly according to the architects special patterning design (Fig. 5).
As part of the City of Durban’s redevelopment program the projected World Cup stadium was chosen to create an icon for the KwaZulu Natal region and Durban, being the 2nd largest city in South Africa. The ambitious plan to gain international attention enabled the lead Architects von Gerkan Marg und Partner, Berlin, the lead structural engineers schlaich bergermann und partner, Stuttgart and BKS, Durban to design an outstanding stadium of unprecedented scale and beauty and therefore won the design competition. The scope of work for the structural engineers did also include all erection engineering, the checking of all workshop drawings and surveys, the site and fabrication supervision as well as the technical lead for the tender process and the implementation phase for the client.

The multipurpose stadium with a possible capacity of 85,000 seats features a unique roof structure of 46,000m² of Glass/PTFE membrane being prestressed against a cable net. The cable net is tensioned against two steel compression rings along the perimeter of the stadium and a mayor arch structure with 103m height and 360m distance between its foundations (Fig. 2-3). Governed by the high wind loads in close proximity to Durban’s coastline the membrane structure required a rather dense cable support structure to minimize the membrane stresses. To achieve a global safety factor greater than 5, as stipulated in the European design guide for tensile surface structures, the distance in plan between ridge and valley cables needed to be reduced to a maximum distance of only 8m at the outside perimeter (compression ring). Often the installation procedures reduce the material strength remarkably, especially when effective quality control is missing. To achieve the required safety factor in reality, a detailed investigation into the strength deterioration due to, manufacturing, handling, packing and installation was undertaken, to overcome the critical strength reduction due to folding of the glass/PTFE material. In order to not accept mishandling of the material the braking strength of the virgin material and the handled material was compared in several stages, even by taking out installed sub panels for testing. The form found and most effective structural shape of the stadium roof drains 75% of the rain water directly towards the gutter located at the compression ring.

The remaining water is firstly running towards the tension ring, before it can be redirected naturally towards the compression ring in the areas underneath to the arches. To achieve this the membrane shape and the gutter located on the tension ring had to be form found in a specific manner. All membrane connections close to the gutter were connected using continuous cables and cable clamps requiring local membrane cut outs with unsupported membrane edges. These locations were designed and tested using bias cut and straight cut membranes. The installation of the membrane panels was following structural design criteria that were derived using the local wind data of prevailing winds. Due to the open shape of the partly installed roof the wind loads during construction and therefore membrane stresses were higher than for the final building, even though reduced wind pressures for construction stages were used. Several construction stages, also for the membrane installation, had to be assessed in the wind tunnel.

Wind Engineering: Wacker Ingenieure, Birkenfeld
Consulting engineer for the membrane: Birdair, Buffalo
Membrane subcontractor: Birdair, Buffalo
Main contractor: JV WBHO / Group 5
Main contractor Roof: Pfeifer Seil- und Hebetechnik, Memmingen
Supplier of the membrane material: Saint Gobain, Merrimack, NH
Capacity: 70,000 World Cup mode; 54,000 legacy temporary seats will be substituted by conference facilities; 85,000 Olympic mode
Steel work: 2,860 tonne main arch, 2,700 tonne compression ring and columns
Cable structure: 550 tonne
Membrane surface: 46,000m²
Roof area: 39,000m² (vertical projection)
Port Elizabeth
Stadium of the “windy city”

Port Elizabeth, one of the South African cities selected to host the games of 2010 Fifa World Cup had the special challenge of building a world class sports arena. A German design team started in 2005 the planning of the stadium, aiming to design a signature landmark that could be at the same time a structurally and economically meaningful building. Contractors from South Africa, USA, Australia, Japan and Kuwait worked during 42 months in its construction, until its completion in April 2009.

Particular boundary conditions, as the frequent wind and an extremely corrosive environment, due to high temperatures combined with a high degree of humidity and salt content of the air required individual solutions from the very initial design of the roof until its final completion. The architectural planning team was inspired by the privileged site, an elevated platform next to the North End Lake, to create a building that could be remarkable and visible from afar.

Roof and facade had a fundamental role in the planning process – integrated in an interesting interplay of concave and convexes forms, both created not only the stadium identification, but functionally they also provided a wind shelter for the internal stands. In addition to the wind tunnel tests to determine the wind loads acting onto the roof, a wind shelter for the internal stands.

Besides accommodating sports events like a 2010 quarter final, the stadium also houses conference rooms, offices, gastronomy and corporate boxes. The major legacy of Port Elizabeth stadium is, therefore, its remarkable contribution to the revitalization of the quarters around North End Lake, transforming the area with its architectural presence and opening its doors for the public, even beyond the final whistle of the 3rd place playoff match in South Africa this year.

Knut Göppert
k.goeppert@sbp.de

Lorenz Haspel

Name of the project:The roof for the new 2010 WorldCup Stadium, Port Elizabeth
Location address: Port Elizabeth, South Africa
Client: Nelson Mandela Bay Metropolitan Municipality
Function: stadium with conference rooms, offices, etc
Year of construction: November 2005 - April 2009
Architects: von Gerkan Marg und Partner, Berlin
Design Team Structural Engineers Roof: schlaich bergermann und partner, Stuttgart
Engineers for local coordination: Iliso Consulting, Port Elizabeth
Consulting engineer for the membrane: Birdair, Buffalo
General Contractor: Grinaker-LTA / Interbeton (Joint Venture)
Contractor Steel manufacture: ABJ, Kuwait
Contractor Aluminium Cladding: CC George Roofing, Cape Town, South Africa
Contractor Steel structure: Taiyo Membrane Corporation
Contractor Membrane structure: Birdair, Australia/USA
Material: Class-PTFE membrane
Capacity: 48.600 seats, thereof 45.940 permanent
Membrane surface: 22.000m²
Capacity: 20.000m²
Covered area: 30.000m²
Costs Roof: ca. 22mio €
The new Stadium in Cape Town is set into the spectacular scenery of the Table Mountain, Lions Head, City Bowl and Atlantic Ocean. Although the location within the Greenpoint Common Area was controversial at the beginning – set in-between a golf course, cricket grounds, tennis courts, etc. – the completed building shows a respectful integration into its environment and surroundings. The design was driven by two main criteria: first, the city set forth specific criteria, which limited the maximum height of the building. The second parameter was the dominating impression of the horizontal silhouette of the Table Mountain. A simple spoke-wheel roof, as has been done many times before for other stadiums, was not possible due to the required height of the columns, which would have exceeded the limit by far. Even a cantilevered roof would have required a construction height at the outer edge that would have exceeded the set limit. Furthermore, to create a counterpoint to the Table Mountain, the eaves of the building should have an intentional curvature to their shape.

The final result is a roof design consisting of a strongly undulating compression ring, a suspended cable net and an elevated truss girder structure. The latter one stabilizes the “soft” cable net in case of unbalanced loads and lifts up the actual roof surface to an elevation that allows for natural dewatering to the outside. Since the suspension roof requires additional weight to bear uplift forces, the entire cladding system of the roof was designed as glazing, a first for any stadium roof.

Preparations in South Africa, venue for the 2010 FIFA World Cup, are in full swing: several stadiums are currently being renovated and built from scratch. Planners are making ever greater use of membrane architecture, with all its advantages, enabling innovative forms of design. Two current examples are the First National Bank Stadium (Soccer City Stadium) in Johannesburg and the new Cape Town Stadium in Cape Town.

The First National Bank Stadium (Soccer City Stadium) in Johannesburg is being completely renovated. The design of the new exterior facade is based on a typical African vessel, the calabash. It has been possible to create the new roof shape, which encircles the stadium, through the use of PTFE/glass fiber membranes coated using Dyneon™ PTFE and Dyneon™ Fluorothermoplastic dispersions. A further highlight for the 2010 World Cup will be created directly at the foot of Table Mountain in Cape Town, where the Green Point Stadium will be replaced by a new and larger stadium. A multifunctional arena is to take shape here under the name of “Cape Town Stadium”. The flowing facade of the stadium consists of an abstract, light membrane structure composed of concave elements having a large surface area. The translucent surface absorbs and reflects daylight in a unique fashion.

At sunset the stadium shimmers red, blue on a summer’s day and gray if the weather is bad. The wave-shaped roof will be coated with laminated safety glass and covered on the inside with a translucent membrane. Technical elements for acoustics and lighting can be integrated between the
glass and the membrane. The company Verseidag Indutex GmbH in Krefeld, which specializes in textile architecture, is supplying the textile support structure of duraskin® membranes. Use of different coating techniques on the different support and cover materials ensures optimum protection, as in a "second skin". The duraskin® membranes consist of coated glass fiber fabric, which offers tensile strenghts of more than one tonne per meter width and only weighs 0,5 kg per square meter. The coating with Dyneon PTFE and Fluorothermoplastic materials provides the membrane with the special characteristics needed for the tough task within the stadium construction. The surface of the coating is very smooth and offers permanent resistance to the most varied weather conditions, as demonstrated by many years experience in different climatic zones. Dyneon PTFE features resistance to almost all chemicals along with good mechanical properties. An important advantage of PTFE coatings is that they require neither plasticizers nor stabilizers, which evaporate over time, leading to embrittlement. The membrane coated with Dyneon PTFE and Dyneon Fluorothermoplastic remains smooth and elastic. After several years service there will be no cracks which could allow bacteria and mould to become established. Even under conditions of limited rainfall a shower is sufficient in order to clean the roof. The transparency of the fabric guarantees optimum light conditions for fans and players during daylight.

For the stadia in Cape Town, Durban and Port Elizabeth Birdair, Inc was involved as contractor for the membranes. Birdair, Inc. is a leading specialty contractor of lightweight long-span roofing systems and tenseile structures throughout the world, providing design-build solutions for architects and clients in all aspects of project design, engineering, installation and maintenance. Lightweight long-span roofing systems and cable structures can be attached to any building envelope and offer aesthetic and functional options to complement any exterior design. Birdair, based in Buffalo, NY, is a member of the Taiyo Kogyo Group, with operations serving North and South America and other international locations. (www.birdair.com)
Initial Experiment

As a first step a Batsail membrane with 5 fibre rods under compression was exposed to several load cases at different positions of the membrane surface to test the deformation of the structure compared to a simple 4-point sail. The results were as expected: the higher the pre-compression in the glass fibre bats, the more homogeneous the behaviour with less deformation over the whole surface of the membrane could be noticed (Fig. 1).

As the first experimental Batsail was too complex as a structure with too many possible influencing factors, it appeared impossible to simulate the behaviour within a computational model. Therefore it was decided to initiate a smaller second advanced experiment with one single glass fibre bat anchored at the edge cable without cantilevering effect.

Second Experiment

Within a scaffold cube of 3m edge length a 4-point shallow hypar was erected. At each corner point spring balances were adjusted to measure the tension forces of the Batsail. A single glass fiber bat was fixed below the membrane by stitching to exclude the influence of seams (Fig. 2). Before starting to tension the rod and putting loads onto the membrane, a laser scan was done. Each step of change that occurred to the membrane by putting loads onto it or removing it, was laser scanned - up to the point of failure of the glass fibre rod (Fig. 3).

The scans of each measurement case were used to create the membrane's surface as a computer model. Projecting a system of grid lines (the same for each case) on each of the membrane models provided the possibility to compare - additionally to the comparison of the measured forces in the rod and spring balances - the different scans to each other, at defined positions: 5 in the field and 3 on the rod itself (Fig. 4).

Inserting a load at any position to a membrane made of one piece to also exclude the influence of seams (Fig. 2). Before starting to tension the rod and putting loads onto the membrane, a laser scan was done. Each step of change that occurred to the membrane by putting loads onto it or removing it, was laser scanned - up to the point of failure of the glass fibre rod (Fig. 3). The deformation of a membrane without anchored bat will be much higher. For the tensioned membrane with uncompressed fibre glass rod and a load of 90N a downward deformation of 2.6% (over all positions 1-8) of the maximum diagonal length of the membrane was monitored. After pre-compressing the bat, the deformation was reduced to only 0.9%! So with the help of a compressed flexible fibre glass bat a significant reduction of deformation was possible.
FORMFINDER Software
"One Click" Cost Estimation
for the architectural design of membrane structures

Who knows the price? At each step of the design someone might ask this question. Especially membrane structures are rarely documented and analyzed with respect to these (cost) factors. Due to the vast number of different shapes a comparison was not possible up to now.

The solution introduced here is based on the Formfinder software and opens a completely new way on the evaluation of different cost factors. The first part of the solution is a new logical database that contains specific expert’s knowledge generously provided by Mr. Horst Dürr at “Ingenieursgemeinschaft If”. The second part is an incorporating self-learning calculation algorithm that connects specific geometric components of the design with the so called design “values”.

Each design “value” represents a specific view on the intended design. It is important that each value is refined with the number of matchable data available and is not only measured in Euros. Also values like uniqueness, complexity factors or geographical values are part of the consideration. A creation of a sample set of these “values” and a closer investigation how they influence the cost estimation is a subject of the PhD thesis by Mr. Nikolay Kim who is working in the Formfinder Software Development Team. The intention of the self-learning calculation process is to support the designer at each step of the design and to increase the architectural quality of membrane structures. The integrated design tool also includes “values” like the shaded area, rain-protected area or simple projects that have been built already. Especially with respect to the project database the intended cooperation with Tensinet will also provide more information to the designer.

Robert Wehdorn-Roithmayr, Formfinder Software GmbH Wien
mail@formfinder.at

Figure 1. Display of the sun-shape area (left) and rain-protected area (right).
Figure 2 (above) The Formfinder ProjectFinder is also available for any mobile device e.g. iPhone
Aranda de Duero is a town in Castille (Spain). A new Arena was constructed in this town. The building consists of a circular grandstand and a global roof. The roof is partially retractable in order to adapt the configuration of the building to different events. The Arena has a circular shape in plan with a diameter of 80.14m. The roof was designed as a shell structure. Half of the central part of the roof is retractable and has a shape of spherical sector of 32.90m of diameter in plan. (Fig 1)

Steel structure – fixed roof
The main structure has a Schwebler configuration. A spherical shape supported only in the perimeter by...
neoprene bearings of 300x400x 121mm located over 36 concrete pillars. The maximum relative level of the fixed roof is 9.64m. This gives a ratio height/span of 1/8.3. The structure conformed by HEB280 profiles as meridian and parallel beams. The diagonals of steel bars 32mm give the shell behavior of the structure. Diagonals were prestressed to ensure efficiency of the system.

The structure has an outer beam. This element of 0.60m depth and 0.90m width was made in reinforced concrete working in tension. The central oculus has in the perimeter a steel hollow beam of 745mm width, 700mm depth and 12mm of thickness. This beam is working mainly in compression. The structure is considerably light. Its slenderness ratio (depth/span) is 1/285 meanwhile the egg shell is 1/100. (Fig 2)

Steel structure – retractable roof
Half of the oculus follows the geometry of the main roof and it is also fixed while the other half is movable. (Fig 3 - 4)

In order to unify the global design of the roof, the retractable part has the same radius of curvature as the fixed roof. To have a more clean view, the structure of the oculus does not follow the structural system of the fixed roof. The movable half spins around the central vertical axis. (Fig 5)

The movable part is supported in the central axis and in four wheels. Two of them are in both edges of the beam, and the other two at 60 and 120 degrees. Two engines move the central wheels. The movable structure is composed by HEB steel profiles. Both circular beam and the one in the diameter have steel hollow section. (Fig 6) Movable upper half bearing on fixed bottom half.

ETFE membrane
ETFE has been used as the oculus roof material to obtain maximum transparency. Even though Aranda has snow winter conditions, the membrane was design as a single layer. ETFE has a thickness of 300μm. The membrane has a negative Gaussian curvature, to resist snow loads as well as wind suction. Steel arches give shape to the membrane. Twelve radial sectors configure the ETFE membrane.

Each of them was fixed to the meridian beams, and stressed by elevating the steel arches. Longitudinal inox 8mm cables were used to help the membrane resist snow loads. (Fig 7)

Conclusions
Light ETFE has allowed to build a slender movable roof which could not be possible with heavier materials such as glass. Single skin gives a high level of transparency which was one of the client’s requirements. One of the main goals of this design was the successful combination of ETFE with a movable structure. (Fig 8)
Case study ‘Tensile surfaces

The present case study – a membrane roof model – took form during a Mastering Research at the University of Ouro Preto, Brazil and aims to explore the characteristics of the roof construction system when applied to a particular situation and to analyze the joint work of Engineering and Architecture on the development of tensile surface structures. It was studied through a particular method of work – which involves flexible, physical and computational models and from which the qualitative and structural solutions are derived. In 2007, the model built for this study was awarded the First Prize at Valmex Structure 2007’s competition, organized by Mehler Tecknologies in Brazil.

1. Introduction

Tensile surface structures are three-dimensional systems composed by the association of membranes and a supporting system (cables, masts, arches, trusses, etc. normally in steel) under a tensile state. Having minimal weight when comparing with the supported load, these structures are very flexible, a result of the substitution of the material mass by the appropriate form to achieve stability. They introduce a unique structural approach, in which the form derives from the flow of forces in the structure. Thus, the stability, performance and efficiency of the system are dependent on the geometry, the pre-stress state and the continuous and integrated work of all the structural components.

This approach represents a major challenge to architects and engineers: the structural solution needs an accurate design, the knowledge on the system’s conditions and parameters and, besides that, it must incorporate the structural analysis to the conception of the project. Therefore, the design process in this case is different from the traditional one, as it should concentrate the efforts of a multidisciplinary team (architects, engineers, manufacturers etc), becoming the result of this team’s interaction since the beginning. Consequently, the quality of the spatial and structural solution and the production of accurate information for the partially industrialized building process are a result of the dialogue among the members of the team and the integration of their work actions.

2. Method of work

In this case study, the particular method of work used comprises the conception of the project as well as the design process. The conception aims to set up the project’s guidelines or, in other words, to understand and define the use, activities and the identity of the object that will be built, such as the building site’s qualities and its characteristics (views, topography, influence of the wind/sun, neighbourhood, relation with the landscape and city, and the local laws). The design process includes physical and computational modelling and permits the development of the system’s equilibrium configuration, gradually exploring the benefits of having Architecture and Engineering working together.

The physical modelling can be accurately carried out and allows the investigation of the geometry and the behaviour of the components under a tensile stress field. However, the method of using flexible physical models was indirect in this case study. That means it was based on the identification and mapping of the most important characteristics of the constructive system (geometry and integrated work of the components under a tensile state) for later observations and qualitative analysis of the system’s behaviour. The dimensions and parameters involved on the physical model and the ones of the real structure are the same, but there is no geometric factor to establish a relation between the material’s properties (unit weight and load), a fact that could turn evaluation into a simplified representation of the reality.

The computational models comprise the engineering of the structure, including the selection of the materials and the analysis and design of the system. The Density Force Method and the Finite Element Method were used when studying this roof. They made possible the modelling of the initial surfaces (form finding) and the preliminary non-linear analysis of all the structure, refining the research on the equilibrium configuration of the proposed model.

2.1 Conception of the design or guidelines of the project

The site chosen to reveal the proposed covering model is the amphitheatre square of the Federal University of Ouro Preto, which is a large strategic area, situated in the centre of the main campus (Figure 1). Within this academic context, the proposed project intends to give visibility and a purpose to the place, stimulating the local use under different weather conditions – a cultural, academic or ephemeral use.

The proposed configuration occupies an area of 2212m² and is composed by two surfaces: a permanent one (external) and a retractable one (internal). This creates an appropriate solution: it protects from rain or sun, provides the experience of open and close spaces, permits occasional changes and offers flexibility towards the most different uses. It also explores the possibilities for natural lighting and ventilation of the large free space as well as the openings to the nice views and relation with the landscape. A frequent use will improve the safety of the place.

2.2 Design process

The first stage of the design process comprised the insertion of the structural project on the local physical context using physical models. The initial models, with scale of 1:500 (Figures 2, 3), explores different structural configurations and allows the intuitive understanding of the global system. The models on scales 1:200 (Figure 4) and 1:100 (Figures 12, 13) provide a more detailed comprehension. The 1:500 and 1:200 models were built with nails, fishhooks, cotton thread, nylon fabric from woman’s stocking and cardboard for their bases. For the 1:100 model, paper, cotton, steel thread and hardboard for the base were employed.

The first proposed configuration - Study 1 (a 17x18x5cm flexible model built on a 1:500 scale) presents the system’s support and the...
structures’ design process

permanent external roof (Figure 2). A three-
dimensional system supports the top of this
roof. It is supported by four tall rigid masts and
rigid bar elements, with no continuity, inserted
in a continuous net of tensile cables and
defining a stable and articulated spatial system
(Tensegrity’s Principle). The system is associated
to two rigid rings: the inner ring, connected to
cables, and the outer ring, connected to the rigid
bars. This association brings more stability and
stiffness to the system.

On the second proposal - Study 2
(a 17x18x5cm flexible model built on a 1/500
scale) the top of the roof is also supported by
the three-dimensional system and the basis is
still sustained by the same tall masts (Figure 3).
The main difference is that the basis is now at a
higher position in reference to the ground due
to shorter masts added to the model. Another
difference resides in the fact that the spatial
system is supported by three tall independent
masts that are no longer rigid but present a
hinge and tensile cables. The three-dimensional
pin-ended mast’s configuration is a stable shape
in space that avoids the flexural moment. The
compressed mast and the two tensile cables also
enable the reduction of the structure’s
weight, increasing its efficiency.
The Study 2 was chosen to give continuity to
the research on the geometry and behavior of
the roof due to the simplicity and the
challenging balance situation of the supporting
system in addition to the search for the
integration of the proposed tensile membrane
structure with the landscape.

Hence, a new flexible model was created (scale
1/200, 50x50x10cm) in order to study the
complete roof. This Study 2 (1st adjustment)
revealed the necessity of some modifications on
the supporting system (Figure 4). Thus, the
spatial system received a central flying mast and
the rigid bar elements were connected to
two rigid rings. The central flying mast’s role is
to support the high points of the convertible
surface and by doing so it becomes the central
element of the spatial supporting system. The
two rigid rings have different diameters and are
set on different planes in order to permit the
overlapping and the support of the roofs. The
complete roof also has different arrangement
and behaviour, being now composed by two
anticlastic surfaces (double curvature in
opposite directions). The external permanent
surface is a cone shape, with its top supported
by the internal ring and its basis by the small
tall masts. The internal convertible roof
presents a radial array of nine modules of
saddle-shaped form. The top of the flying mast
supports the roof’s centre and cables anchored
to nine points of both external rings supporting
the roof’s basis. When closed, the centrally
retractable surface is protected by a glass roof.
The mechanisms responsible for the movement
of the internal roof are activated by sliding
engines (tractors) that connect the membrane’s
edges to the cables. These tractors, driven by
synchronized electric engines, move freely along
the cables (which are supported by the top
floating mast and the rings) opening and
tensioning or closing the membrane roof.
However, to make the opening and tensioning of
this surface possible, the flying mast may have
a retractile mechanism that allows the
height adjustment of the system.

The second stage of this process included the
registration and the computational modelling of
the developed proposed system: Study 2
(1st adjustment). It involves the initial surfaces’
modelling (form finding) and the system’s
preliminary analysis.
Initially, the surfaces were modelled through
the Force Density Method using Densalfa,
software developed by Vinícius de Oliveira
(Oliveira, 2003). The force density is an initial
tensile force based in a constant relation
between force and the length of each bar
element, allowing an internal equilibrium of pre-
stress forces. In this mathematical
approximation, the equilibrium form of the
surface relates the geometry and an internal
tensile stress field. Thus, the membrane surface
was discretised as a cable net by the definition of
a net mesh composed by radial and circum-
fessional cable elements and the spatial coordinates of the anchoring points. Then, the force density was applied to the cable elements in both directions. In this method, the simplified equations do not have parameters that refer to the net material. However, it describes the spatial form and allows the understanding of its behaviour and the parameters that govern the surface’s equilibrium shape: the double curvature, the curved edge and the pre-stress forces.

Since the form follows the stress flow, on Figure 5, it is possible to observe the series of adjustments made on the curvatures of the permanent surface that resulted from changes in the applied pre-stress present in the net’s internal field and edge cables. If the tensile force applied to the edge cable is higher than the one on the net’s inner tensile field, the inner surface will present a smoother curvature, becoming less warped. However, if the level of this tensile force decreases, the inner surface will suffer a contraction modifying its form and increasing the warping of the surface and the edge cable’s sag. The final configuration and the surfaces’ tensile stress field were defined by the comparison and overlapping of the surfaces developed through the Force Density Method and the images of the physical model (Study 2 - 1st adjustment) (Figure 6). The final three-dimensional surfaces were exported to another software, which permitted their association to the system’s support axis, and then exported to Ansys® for the preliminary analysis (Figure 7). The supporting system received more adjustments to improve the efficiency of the structural complex. In Study 2 (2nd adjustment), the two rigid rings became a trussed ring (a truss is a binary of tensile and compression in equilibrium that does not develop flexible stresses and allows the use of slender elements). The tall masts and flying masts’ heights were also changed, increasing the slope and reducing the tensile force’s horizontal component of the cables that support the spatial system (Figure 8).

After that, a non-linear computational modelling was carried out by using the Finite Element Method and the Ansys software for structural simulation, and that modeling permitted a preliminary three-dimensional analysis of the whole structure considering the properties of the materials used. This model was developed at the State University of Sao Paulo/USP during Lightweight Systems lectures, taught by Professor Ruy Marcelo Pauletti in a joint work with Engineer Elivaldo Silva, as a way of connecting the aspects of the Architecture and Engineering for the development of the tensile structures.

The preliminary analysis of Study 2 (2nd adjustment) was defined in small and consecutive load steps guaranteeing a gradual change in stress in a search for the equilibrium shape of the structure under pre-stress combined with others loads. In the 4th loading step (Figure 9), considering the structure’s self weight, it is possible to observe that the highest stresses are concentrated on the connections of the external surface to the trussed ring and on the top of the internal surface, near the connections to the flying mast. These points coincide with the areas of maximum displacements of the initial form (Figure 10). Although these displacements may be considered small, they show evidence that these surfaces are subjected to big movements due to loading actions. As deformations and flexibility are part of this structure’s behaviour, it is necessary to adjust the curvatures and the pre-tension level in order to equilibrate these displacements. For further analysis, it is important to consider the wind load, as it is the most important load on the system at the site where the roof is placed, due to the system’s minimal structural mass.

To investigate the adjustments that had been done on the supporting system and the patterning of the spatial surfaces another flexible model on a 1/100 scale and 80x90x19cm wide was built: Study 2 – 2nd adjustment (Figure 13). Initially, the three-dimensional surfaces, composed by radial and circumferential cable elements and generated by the Force Density Method, were converted into a triangular mesh using a graphic software. Then, this mesh was patterned into strips, following the geodesic lines or, in this case, the radial lines. Then, the spatial strips were flattened through mesh’s triangulation (determining the relative positions of the mesh’s points in space by measuring of each element’s length distances and its angles), forming two-dimensional panels (Figure 11). Later, the two-dimensional panels were printed, cut out and received extra border-sides to allow the lateral overlapping and fixing of the panels and to form the loose edge pockets through which the cables (cotton threads) passed. By doing so, it was possible to produce the three-dimensional geometry, pre-stress the surface and connect it to the supporting system. For this procedure, it was very important to align the panel patterning to the fabric’s directions (warp and weft) and to the main curvatures of the surface in order to minimize the strains and distribute the stress in the surface uniformly.

This flexible model was built on a flat surface to facilitate its mobility and considered the top level of the amphitheatre as reference. All components (masts, trussed ring and surfaces) were produced at once. Their assembly was done in consecutive stages. First, the supporting system was installed: placement of the

![Figure 5. Changes in the pre-stress on the external surface.](image)

![Figure 6. Comparison and overlapping of the surfaces developed through the Force Density Method and the images of the physical model (Study 2 - 1st adjustment).](image)

![Figure 7. Final three-dimensional surfaces associated to the system’s support axis.](image)

![Figure 8. Supporting system adjustments: the two rigid rings became a trussed ring; tall masts and flying masts’ heights changes.](image)

![Figure 9. 4th loading step: stress on the structure’s self weight.](image)

![Figure 10. 4th loading step: displacements on the structure’s self weight.](image)
guarantee a partial three-dimensional stability (Figure 12). Then, an initial pre-tension was applied to temporary support and lifting of the trussed components on, the pre-tension was applied to all the connected to the supporting system and, later, displacements. The surfaces were hoisted and the supporting system separately suffers large changes of the cable in different directions as an articulated system, it introduces a rigid bars arrangement of three tubes connected with buckling for the higher masts, the chosen section was an open one, composed by an arrangement of three tubes connected with rigid bars (Figure 14) that decrease the buckling length, increase their stability and optimize the use of material as well.

Another point to emphasize is how these structures were pre-tensioned. It was observed that the connections have a significant performance and represent the articulation between components. As the membrane structures do not support compressive and flexural stresses, they may be subjected to large movements when under loading actions. As a result, the connections become essential to the system, for they should allow rotations and displacements and provide the means of reaching the structure’s taut state.

The mast-cable proposed connections (Figure 14) were done by flat steel plates, eyed or not, allowing the insertion of steel cable terminals (shackles, swages, spelters) that permit length adjustments and the articulation and angular changes of the cable in different directions as well. The masts and cables basis, with ball hinges, were articulated and permitted rotation and their adjustment. For the trussed ring, the connections between the truss tubular bars and the ring were done by flat steel plates, allowing the connection of other eyed plates. These new-eyed plates allowed the anchoring of the support cables. The flying mast (Figure 15) was supported by tubular rings located on its base and top. The top rings received the cables of the supporting system, the convertible roof, and its transparent protection.

3. Conclusion

The proposed model made possible the investigation and experimentation of the system’s form and behaviour in a particular situation, and provided understanding on what makes tensile surface structures unique: the search for the minimal quantity of energy focusing quality when designing and constructing. In other words, the system’s basic development principle resides on how the system organizes itself to support and equilibrate the load, in an attempt to optimize the form of all the components (weight, size, etc), their material (cost), the stress distribution and the man-work (designing, manufacturing and assembly).

As an integrated system, it introduces a complete interrelation between form and forces, which means between the constructed form and the spatial proposal. It can be affirmed that during the design the search for the membrane’s equilibrium shape is quite associated to the choice of the supporting
system, consequently they need to be elaborated together for simplicity, quality and efficiency. In this context, the development of the global and the three-dimensional view of the whole system are essential, as well as the knowledge on the design and building processes, as all the decisions affect the system’s form, behaviour and building process.

This particular process of work also permitted verifying that each stage of the designing process generates different types of additive information and integrates Architecture and Engineering to the constructive process. The physical models permitted the qualitative exploration, investigation and analysis of the behaviour (flexible and non-linear) of the system, the boundary conditions, the form and geometry of the components in a tensile equilibrium state, which would not be possible to be experienced in a two-dimensional field. They also made possible the understanding of the manufacturing of the components and their assembling process, just as a global view of the system, bringing the study closer to reality.

The computational modelling of the surfaces by the Force Density Method allowed the comparison between the physical model and the preliminary analysis. It also permitted the representation of the proposed shape in the first stages of the designing through the control of the geometry and pre-stress, the so-called Form Finding Procedure.

In others words, the computational modelling considered only the parameters that control the equilibrium shape of the surface and left out the material stiffness. The preliminary analysis carried out through the Finite Element Method allowed checking the viability of the equilibrium configuration of the whole structure considering its self weight as well as experiencing the complexity and efficiency of numerical analysis. Besides, the brief research on the structural components confirms the importance of the study of the form of each element associated to its behaviour, seeking the simplicity of the system and of the building process. It points out new possibilities of study like patterning of components and connections, focusing on interchangeable connections to simplify and ease the adjustment among components, reducing the time of assembly and the cost.

The initial designing procedure also stimulates the spontaneous development of the structural complex and the elaboration of viable configurations to be studied. The research added accuracy and efficiency. Therefore, it is interesting to emphasize that all actions taken by architects and engineers converged to the improvement, refinement and synthesis of the initial proposal. This dialogue, besides adding quality, amplifies the chances of a complete understanding of the structural problem and reveals expressive structural solutions.

Acknowledgments
To Vinícius Maia Barreto de Oliveira, for the cession of DENSALFA program developed during his PhD at COPPE/UFRJ, 2003, and to Elivaldo Silva (Doctorate Student at State University of São Paulo/USP) for the computational modelling and the helpful suggestions.

References

References of figures

Eliana Ferreira Nunes, Architect, Msc – PhD Candidate at Federal University of Ouro Preto UFOP, MG, Brazil
Eliananunes.br@gmail.com

João Batista Marques de Sousa Junior
Professor at Federal University of Ouro Preto UFOP, MG, Brasil
joao@em.ufop.br

The pavilion was designed by cepezed in the 1990s. Due to the scale enlargement of the entire area during the last decade, the Municipality of Amsterdam requested the owner and operator to invest in high-quality expansion. The original building consists of an elongated, two-storey box measuring 20x10m. In the initial designs, the extension involved a skin of ETFE cushions that constituted a roofed-over winter garden, stretching over the pavilion as a kind of rotation figure. As a result of various regulations and a refinement of the programme by the client, the concept eventually evolved into a transparent glass oval, more than 12m high and measuring 43 by 30m in length and width, accommodating wholly climatized bar and restaurant functions. On the ground floor, the main volume has a 2m constriction, while the first floor has a gallery more than 4m wide. The façade and the roof are particularly striking. The façade consists of cold-bent insulation glass, which was bent and placed by means of suckers on the site itself. On the ground floor, the façade can be opened over more than three quarters of its length by means of a faceted folding wall in which every separate part has a different radius (Fig 1-2).

The façade accommodates three stability crosses, of which two are situated at the heads of the oval. These locations are also used for the organization of the stairs. The roof is more than 2.5m high and comprises eight large pneumatic cushions mounted on a refined detailed steel construction of faceted delta-beams. Each of the cushions consists of four layers of ETFE with three air chambers in each cushion. The ETFE bears a pattern through which the sun and light transmittance can be regulated by a change in pressure in the innermost chamber (Fig 3).

The air supply for the cushions is integrated in the construction. A cooling “patio” has been integrated in the roof for the building-related installations that must have contact with the outside air. The paving of the boulevard continues on into the pavilion. Embedded in large plant pots that were cast in the floor at the time of construction, the greenery appears natural and self-evident.
In November 2010 the first University Master Program in "Membrane Lightweight Structures" will start at the Vienna University of Technology. The world’s leading experts will share the latest technologies and tools in textile architecture. The 4 semester part-time Program contains modules from "Fundamentals in membrane architecture and engineering" up to state of the art "Detailing / Workshop drawings" and "Software tools". The major target group is the individuals working in architects and engineers offices in the private or the public sector, who aim to enhance their professional career and prepare themselves for an exciting, interdisciplinary, and innovative professional future. Graduate students in related disciplines are also of great value to this program. Visionary concepts and top class lectures are designed to accentuate the entire creative process from the first sketch up to the realization.

Application latest: June 12th 2010

For further information look at

Robert Wehdorn-Roithmayr

mail@formfinder.at

www.formfinder.at

http://mls.tuwien.ac.at

mls@tuwien.ac.at

This March, it was the 5th time that the Institute for Membrane and Shell Technologies started with its Master Course in Membrane Structures at the Anhalt University of Applied Sciences. The course is accredited as an international master course by the accreditation board AQAS. Over the past 5 years there were 111 students from 37 countries. About one third of the students are architects, one third of the students are civil engineers while the others have another background like tensile surface structures fabricator or university professor. 27 students had already successfully finished the course, with 14 extra graduating this year.

The Grand Opening event with the handover of the Master Degree Certificates to the alumni and the exhibition of master-theses took place on Sunday 7th March. For further information look at

www.membranestructures.de

Spanish edition European Design Guide for Tensile Surface Structures

ARQUITECTURA TEXTIL Guía Europea de Diseño de las Estructuras Superficiales Tensadas

Author: Brian Forster, Marijke Mollaert

In 2004 TENSINET (initially the European Network of Tensinet Structures, later re-named the Tensinet Association) completed a project in which its members had engaged for over two years: the formulation of the first design guide for this type of structures, published that same year. The guide immediately became an international reference for the design and engineering of tensioned membrane structures, particularly any involving woven fabric. It contains a full description of the options available in this type of structures, as well as the aspects relevant to both architectural design and structural and service engineering. It is, in short, a complete guide for designers involved in this type of construction.

Shortly after the international association was founded, the establishment of regional chapters was seen to be a desirable corollary. That idea materialized with the creation of the Iberian Section (Tensinet Ibérica), which groups the Tensinet members headquartered in Spain or Portugal, and possibly in the future, in Latin America. The Iberian Section was instituted at a meeting of its members held at Guimarães, Portugal, in October 2006.

One of the Section’s first tasks was to translate the Tensinet design guide, both as an aid for its present and future members and as a contribution to the construction industry’s expertise. The aim was to furnish more complete information on tensioned membrane technology and tensile architecture in general, making such formally and operationally attractive solutions more readily accessible to designers. The contributions of many Tensinet Ibérica members were instrumental to its publication.

PROFIL TENSION SYSTEM

INNOVATION: THE TS ARCHI PROFILE

PROFIL TS has recently registered a new patent: the TS ARCHI profile. PROFIL TS is specialised in tensioning system solutions for all kind of PVC and textile materials. Used with the TS range, TS ARCHI system perfectly completes PROFIL TS existing tensioning solution and offers a tension recovery of the fabric and prevents from slackening.

In 2010, a new TS Range aluminium profiles was introduced onto the façade textile market in combination with PROFIL TS traditionnal system + TS ARCHI system.

Additionally to its effects on materials expansion, the new European patent allows to offer wider and bigger textile tiles and is able to face climatic changes, giving guarantee on the whole mesh life.

contact@profil-ts.com

www.profil-ts.com

www.facade-textile.com

PROFILES 2010 + TS ARCHI system (middle & under)

TS ARCHI TENSION OPTIMIZATION With TS RANGE profiles + Gripp + TS KEY (top) and Mesh Expansion Recovery with PROFIL TENSION SYSTEM

INNOVATION:

THE TS ARCHI PROFILE

Gripp + TS KEY (top) and Mesh Expansion Recovery with PROFIL TENSION SYSTEM

TS RANGE profiles + PROFIL TENSION SYSTEM
CALL FOR ABSTRACTS

ANNOUNCEMENT

V CONFERENCE

ON TEXTILE COMPOSITES

AND INFLATABLE STRUCTURES

STRUCTURAL MEMBRANES 2011

BARCELONA, SPAIN, 5 – 7th OCTOBER 2011

The previous conferences of these series were held in Barcelona (Spain) in 2003, in Stuttgart (Germany) in 2005, in Barcelona in 2007 and in Stuttgart in 2009.

The objectives of Structural Membranes 2011 are to collect and disseminate state-of-the-art research and technology for design, analysis, construction and maintenance of textile and inflatable structures. The conference will address both the theoretical bases for structural analysis and the numerical algorithms necessary for efficient and robust computer implementation. A significant part of the conference will be devoted to discuss advances in new textile composites for applications in membrane and inflatable structures, as well as in innovative design, construction and maintenance procedures.

In summary, Structural Membranes 2011 aims to be a forum for discussing recent progress and identifying future research directions in the field of textile composites and inflatable structures.

Deadline for presenting a one page abstract:
13th February 2011

Further information is available at http://congress. cimne.com/
membranes2011/frontal/Dates.asp

CALL MILANO CAMPING DESIGN COMPETITION

The Milano Camping Design Competition is organised by the Milan city council, Department of production, labour policy and employment, by the INDACO department of Politecnico di Milano and by Triennale di Milano, with the patronage of the ADI, the Italian industrial design association, and the European Association TensiNet, in collaboration with Material Connexion Milano and with support from Ferrino.

The Competition, focused on the theme of innovative low-cost accommodation, is aimed at young designers, project architects and visitors who are to come to Milan in future years for the occasion of the many events organised throughout the year, culminating in Expo 2015, an event of international magnitude.

The Competition calls for the design of a new concept of city campsite, understood to be the place where various accommodation facilities for visitors are grouped together and equipped with all amenities, which can in part be adapted by the users themselves. These new forms of housing add to the value of flexibility of use and promote temporary forms of housing which can easily be prepared on the occasion of a specific event and dismantled and repositioned on the basis of needs that change in time. These new models of housing cannot however escape the idea of environmental sustainability, forcing the project architects to choose materials and technologies with low environmental impact and high efficiency.

The Competition is structured in different phases whose overall objective is to promote a new concept in low-cost city accommodation and produce the actual campsite in stages, by selecting the best ideas and the best construction solutions.

First phase - concept design: deadline 17th May 2010
Second phase - feasible design: deadline 21st June 2010

Further information is available at www.designcamping.it/